Переводчик

пятница, 29 мая 2015 г.

понедельник, 25 мая 2015 г.

Опасные химические реакции

"БОМБА В РАКОВИНЕ"- забавно или не очень?!
Существуют некоторые химические реакции, которые протекают спонтанно при смешивании реагентов. При этом образуются достаточно опасные смеси, которые могут взрываться, воспламеняться или отравлять. Вот одна и них!
В некоторых американских и английских клиниках наблюдались странные явления. Время от времени из раковин раздавались звуки, напоминающие пистолетные выстрелы, а в одном случае неожиданно взорвалась сливная трубка. К счастью, никто не пострадал. Расследование показало, что виновником всего этого был очень слабый (0,01%) раствор азида натрия NaN3, который использовали в качестве консерванта физиологических растворов. Азид свинца Излишки раствора азида в течение многих месяцев, а то и лет сливали в раковины — иногда до 2 л в день. Сам по себе азид натрия — соль азидоводородной кислоты HN3 — не взрывается. Однако азиды тяжёлых металлов (меди, серебра, ртути, свинца и др.) — весьма неустойчивые кристаллические соединения, которые взрываются при трении, ударе, нагревании, действии света. Взрыв может произойти даже под слоем воды! Азид свинца Pb(N3)2 используется как инициирующее взрывчатое вещество, с помощью которого подрывают основную массу взрывчатки. Для этого достаточно всего двух десятков миллиграммов Pb(N3)2. Это соединение более взрывчато, чем нитроглицерин, а скорость детонации (распространения взрывной волны) при взрыве достигает 45 км/с — в 10 раз больше, чем у тротила. Но откуда в клиниках могли взяться азиды тяжёлых металлов? Оказалось, во всех случаях сливные трубки под раковинами были изготовлены из меди или латуни (такие трубки легко гнутся, особенно после нагревания, поэтому их удобно устанавливать в сливной системе). Выливаемый в раковины раствор азида натрия, протекая по таким трубкам, постепенно реагировал с их поверхностью, образуя азид меди. Пришлось менять трубки на пластмассовые. Когда в одной из клиник проводили такую замену, оказалось, что снятые медные трубки сильно забиты твёрдым веществом. Специалисты, которые занимались «разминированием», чтобы не рисковать, подорвали эти трубки на месте, сложив их в металлический бак массой 1 т. Взрыв был настолько силён, что сдвинул бак на несколько сантиметров! Медиков не очень интересовала сущность химических реакций, приводящих к образованию взрывчатки. В химической литературе также не удалось найти описания этого процесса. Но можно предположить, исходя из сильных окислительных свойств HN3, что имела место такая реакция: анион N-3, окисляя медь, образовал одну молекулу N2 и атом азота, который вошёл в состав аммиака. Это соответствует уравнению реакции: 3NaN3+Cu+3Н2О=Cu(N3)2+3NaOH+N2+NH3. С опасностью образования бомбы в раковине приходится считаться всем, кто имеет дело с растворимыми азидами металлов, в том числе и химикам, поскольку азиды используются для получения особо чистого азота, в органическом синтезе, в качестве порообразователя (вспенивающего агента для производства газонаполненных материалов: пенопластов, пористой резины и т. п.). Во всех подобных случаях надо проследить, чтобы сливные трубки были пластмассовыми. Сравнительно недавно азиды нашли новое применение в автомобилестроении. В 1989 г. в некоторых моделях американских автомобилей появились надувные подушки безопасности. Такая подушка, содержащая азид натрия, в сложенном виде почти незаметна. При лобовом столкновении электрический запал приводит к очень быстрому разложению азида: 2NaN3=2Na+3N2. 100 г порошка выделяют около 60 л азота, который примерно за 0,04 с надувает подушку перед грудью водителя, спасая тем самым ему жизнь.http://www.kristallikov.net/page19.html

пятница, 15 мая 2015 г.

Почему из атомов образуются молекулы?

    Стремление к состоянию с наименьшей энергией является общим свойством материи. Вы наверняка знаете о горных снежных лавинах и камнепадах. Их энергия настолько велика, что может сметать с лица земли мосты, дома и другие крупные и прочные сооружения. Причина этого грозного явления природы в том, что масса снега или камней стремится занять состояние с наименьшей энергией, а потенциальная энергия физического тела у подножья горы меньше, чем на склоне или вершине. 


   Атомы образуют между собой связи по той же причине: суммарная энергия соединившихся атомов меньше, чем энергия тех же атомов в свободном состоянии. Это очень счастливое для нас с вами обстоятельство – ведь если бы при соединении атомов в молекулы не происходил выигрыш в энергии, то Вселенную заполняли бы только атомы элементов, а появление простых и сложных молекул, необходимых для существования жизни, было бы невозможно.
      Однако, атомы не могут связываться друг с другом произвольно. Каждый атом способен связываться с конкретным количеством других атомов, причем связанные атомы располагаются в пространстве строго определенным образом. Причину этих ограничений следует искать в свойствах электронных оболочек атомов, а точнее – в свойствах внешних электронных оболочек, которыми атомы взаимодействуют друг с другом.
Завершенная внешняя электронная оболочка обладает меньшей (т.е. более выгодной для атома) энергией, чем незавершенная. По правилу октета завершенная оболочка содержит 8 электронов:
Таковы внешние электронные оболочки атомов благородных газов, за исключением гелия (n = 1), у которого завершенная оболочка состоит из двух s-электронов (1s2) просто потому, что p-подуровня на 1-м уровне нет.

Внешние оболочки всех элементов, кроме благородных газов, являются НЕЗАВЕРШЕННЫМИ и в процессе химического взаимодействия они по возможности ЗАВЕРШАЮТСЯ.
Чтобы такое "завершение" могло произойти, атомы должны либо передать электроны друг другу, либо предоставить их в общее пользование. Это заставляет атомы находиться рядом друг с другом, т.е. быть связанными химической связью.
Существует несколько терминов для обозначения разновидностей химической связи: ковалентная, полярная ковалентная, ионная, металлическая, донорно-акцепторная, водородная и некоторые другие. Однако, как мы увидим, все способы связывания частиц вещества между собой имеют общую природу – это предоставление собственных электронов в общее пользование (более строго - обобществление электронов), которое часто дополняется электростатическим взаимодействием между разноименными зарядами, возникающими при переходах электронов. Иногда силы притяжения между отдельными частицами могут быть и чисто электростатическими. Это не только притяжение между ионами, но и различные межмолекулярные взаимодействия.http://www.hemi.nsu.ru/ucheb131.htm

воскресенье, 10 мая 2015 г.

З днем Матері!


                                                                                                                  фото Укрінформ

четверг, 7 мая 2015 г.

Путеводная звезда химии

                               Значение периодического закона

Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований. В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестнгы. Так, был неизвестен элемент 4 периода скандий. По атомной массе вслед за Ca шел Ti, но Ti нельзя было поставить сразу после Ca, т.к. он попал бы в 3 группу, но по свойствам Ti должен быть отнесен к 4 группе. Поэтому Менделеев пропустил одну клетку. На том же основании в 4 периоде между Zn и As были оставлены две свободные клетки. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Были даны этим элементам и названия экабор( так как свойства его должны были напоминать бор), экаалюминий, экасилициум.
   В течение следующих 15 лет предсказания Менделеева блестяще подтвердились; все три ожидаемых элемента были открыты. Вначале французский химик Лекок де Буабодран открыл галлий, обладающий всеми свойствами экаалюминия. Вслед за тем в Швеции Л.Ф. Нильсоном был открыт скандий, и, наконец, спустя еще несколько лет в Германии К.А.Винклер открыл элемент, названный им германием, который оказался тождественным эаксилицию... Открытие Ga, Sc, Ge было величайшим триумфом периодического закона.
  Большое значение имела периодическая система также при установлении валентности и атомных масс некоторых элементов. Точно так же периодическая система дала толчок к исправлению атомных масс некоторых элементов. Например, Cs раньше приписывали атомную массу 123,4. Менделеев же, располагая элементы в таблицу, нашел, что по своим свойствам Cs должен стоять в главной подгруппе первой группы под Rb и поэтому будет иметь атомную массу около 130. Современные определения показывают, что атомная масса Cs равна 132,9054..
  И в настоящее время периодический закон остается путеводной звездой химии. Именно на его основе были искусственно созданы трансурановые элементы. Один из них- элемент №101, впервые полученный в 1955 г., - в честь великого русского ученого был назван менделевием.
   Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева. .Блестящее подтверждение нашли пророческие слова Менделеева:"Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие".
http://pages.marsu.ru/kam/School1.html

понедельник, 4 мая 2015 г.

Почему Менделеев не получил Нобелевскую премию

В Петербурге рассказали, почему Менделеев не получил Нобеля

08.02.2014 | Источник:

Правда.Ру

В Петербурге рассказали, почему Менделеев не получил Нобеля. 288650.jpeg

Директор музея-архива Менделеева в Петербургском университете Игорь Дмитриев рассказал, что против присуждения Нобелевской премии великому ученому выступили, поскольку периодический закон был открыт им слишком давно, в 1869 году (завещание Нобеля предписывало давать премию, впервые врученную в 1901 году).  



Татьяна Кораблева,заместитель директора музея-архива, где сегодня в честь 180-летия со дня рождения Менделеева организовали день открытых дверей, рассказала журналистам, что, по традиции, иностранным ученым здесь задают вопрос: "Каких еще русских ученых вы знаете?" Обычно после этого вопроса повисает пауза, сказала она.
Нобелевский лауреат Аарон Чехановер летом 2013 года на 38 конгрессе Федерации европейских биохимических обществ в Петербурге назвал Менделеева "величайшим химиком мира" за открытие периодического закона химических элементов.
Кроме того, Игорь Дмитриев сообщил, что Дмитрий Иванович Менделеев не был расстроен отсутствием Нобелевской премии, поскольку эта награда была еще очень молодой, и стала набирать авторитет лишь в 1910–1920 годах, уже после смерти Дмитрия Ивановича. Более того, Менделеев обладал всеми наиболее престижными в то время научными наградами и званиями. В частности, медалью Коплей, которая в эпоху Менделеева была столь же значимой, как сегодня Нобелевская премия.http://www.pravda.ru/news/science/08-02-2014/1191324-Mendeleev-0/

  Читайте также Самые знаменитые премии мира

пятница, 1 мая 2015 г.

С 1 мая!

О любви

— В чём разница между «Нравится» и «Люблю»?
— Когда Вам нравится цветок, вы его срываете. Но если вы любите цветок, вы ежедневно его поливаете.
            
      
За словами Вакарчука, головна ідея пісні, що ховається в назві, є непростою для зізнання навіть самому собі – нам, українцям, протягом багатьох століть постійно нав’язують ззовні чиїсь думки, дії і, навіть, війни. Нині настав час, врешті, брати відповідальність та ініціативу на себе. «Головна битва – всередині кожного з нас, всередині нашого суспільства. Адже «твоя війна» - це боротьба з власними комплексами, страхами щось змінити, вплинути на те, що відбувається навколо тебе, не звинивачувати «десь і когось», а брати ситуацію в свої руки. Це – надскладно, та без цього немає успішного майбутнього ні у людини, ні у суспільства, ні у країни», - наголошує Вакарчук.
  Одним з головних елементів відео «Не твоя війна» є така собі монета випадкового вибору з темною та світлою сторонами. Цей образ виник з ідеї режисера зобразити суспільство, яке чекає, а не діє, яке сторонньо спостерігає, в який же бік впаде монета, «пощастить-не пощастить» в черговий раз. А це – шлях занепаду, а аж ніяк не розвитку. Та в кінці відео, зображена в ньому спільнота все-таки отримує шанс на розвиток й далі все залишається вже в її руках. А монета просто зникає. http://okeanelzy.com/ua/news/296/